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Abstract-Four turbulence models are applied to the numerical prediction of the turbulent impinging jets 
discharged from a circular pipe measured by Cooper cl ol. [In[. J. Hea/ Mass Tramfir 36, 267552684 
(1993)]. Baughn and Shimizu [ASMEJ. Heat Trumfer 111, 1096-1098 (1986)] and Baughn e/al. [ASME 
Winter Annual Meeting. November 19921. They comprise one/i--~ eddy viscosity model and three second- 
moment closures. In the test cases selected, the jet discharge was two and six diameters above a plane 
surcdce orthogonal to the jet’s axis. The Reynolds numbers were 2.3 x IO’ and 7 x IO’, the flow being fully 
developed at the discharge plane. The numerical predictions, obtained with an extended version of the 
finite-volume TEAM code, indicate that the k model and one of the Reynolds stress models lead to far 
too large levels of turbulence near the stagnation point. This excessive energy in turn induces much too 
high heat transfer coefficients and turbulent mixing with the ambient fluid. The other two second-moment 
closures, adopting new schemes for accounting for the wall’s effect on pressure fluctuations, do much better 
though one of them is clearly superior in accounting for the effects of the height of the jet discharge above 
the plate. None of the schemes is entirely successful in predicting the effects of Reynolds number. 11 is our 
view. however, that the main cause of this failure is the two-equation eddy viscosity scheme adopted in all 
cases to span the near-wall sublayer rather than the outer layer models on which the present study has 

focused. 

1. INTRODUCTION 

IN SOME respects CFD for turbulent flows can already 
be said to be a mature subject. Numerical algorithms 
are sufficiently refined and computational power 
sufficiently abundant that in two-dimensional and 
even some three-dimensional flows purely numerical 
errors can be reduced to insignificant levels. A sign of 
this advancing maturity is the growth in the use of 
commercial CFD software that is seemingly able to 
solve, in a routine way, any fluid flow problem that 
may arise. The reality, however, is that no software 
can be better than the physical models embedded 
within it. The models of turbulent mixing incor- 
porated in these codes are, for the most part, ones 
developed twenty years or so ago at a time when 
computer limitations meant that the empirical 
coefficients they contain had to be tuned by reference 
to simple thin shear flows. 

The impinging turbulent axisymmetric jet on which 
attention is here focused provides a strikingly different 
test flow: the motion in the vicinity of the stagnation 
point comprises a nearly irrotational normal straining 
(rather than simple shearing), while that nearer the 
edge of the impinging jet combines strong rotational- 
ity and streamline curvature. Finally, further from the 
impingement point the flow does revert to a thin shear 
flow but by no means to a simple one, with the maxi- 
mum shear stress occurring outside the wall region 
and the flow thus retaining a significant memory 
of its upstream history. Because the flow is geometri- 

tally simple, it can be easily handled from a numeri- 
cal point of view. It thus provides an ideal test case 
for turbulence model assessment. In the present con- 
tribution, four models have been tested. Two of these 
have been very widely used in research and in com- 
mercial software : the low-Reynolds-number k--E eddy 
viscosity model of Launder and Sharma [I] and the 
basic second-moment closure of Gibson and Launder 
[2]. Two new schemes have also been considered 
where one of the impinging jet flows has been used to 
help calibrate the sub-model relating to wall effects on 
the pressure-strain process. 

The turbulence models are presented in Section 2 
together with relevant details concerning the solver 
and the numerical computations. The results are 
discussed in relation to the experimental data in 
Section 3. 

2. THE COMPUTATIONAL PROGRAMME 

2. I. The nlodels considered 
The four models tested are detailed in Tables I-4. 

Model I, summarized in Table I, is the Iow-Reynolds- 
number k--E model of Launder and Sharma [I] with 
the so-called ‘Yap correction’ added to the transport 
equation for 5 [3]. This scheme is also adopted across 
the low-Reynolds-number sublayer in the case of 
Models 2-4 since they are held to apply only where 
viscous effects are negligible. These models are all 
second-moment closures where the turbulent stresses 
uiuj form the subject of differential transport equa- 
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NOMENCLATURE 

08, anisotropic stress, u,uj/k- $Si, T mean temperature 
A stress invariant, 1-9/8(A,- AI) TW wall temperature 
AZ stress invariant, a,,~;, 

--fTT- 
UiU,r u , l’-. w-, uv Reynolds stresses 

A, stress invariant, aiiajcapi u,o heat flux 

4 diffusion of Reynolds stress u’, 0’ r.m.s. fluctuating velocities 
4 diffusion of turbulence energy U,, U, V mean velocity components 

4, diffusion of heat flux ua bulk velocity 
4, diffusion of scalar variance Xi coordinate direction 
D diameter of inlet pipe 1 distance from wall 

Dl, tensor used in new stress models YC Yap correction. 
f;, f ,  damping functions in k--E model 

.A. length-scale function 
H height of jet discharge above plate Greek symbols 
k turbulent kinetic energy 4, Kronecker delta 
“8 component of unit vector normal to wall E dissipation rate of k 
Nu Nusselt number i isotropic dissipation rate of k 
Pr Prandtl number &ii dissipation rate of Reynolds stress 

PI, Reynolds stress generation rate & I” dissipation rate of heat flux 

Pk turbulence energy generation rate 6 dissipation rate of scalar variance 
P,” heat flux generation rate 0’ scalar variance 
p,, scalar variance generation rate V kinematic viscosity 
I radial distance VI turbulent viscosity 
R time-scale ratio co turbulent Prandtl number 
Re bulk Reynolds number pressure-strain correlation 

4 turbulent Reynolds number pressure-scalar gradient correlation. 

Table I. Low Reynolds number L-E model 

Dk 
E = d,+P,--E 

aklf2 2 
I:=t+2v ~ 

( > ax, 

v, = c,,J,k’/B 

.f, = exp 
3.4 

- 
(1 +R,/SO)’ 

J, = (l-0.3exp{--Rf}) 

c,, = 1.44 cc2 = 1.92 c,, = 0.09 c, = 0.83 c, = 2.5 
Uk = I.0 CT. = 1.3 (To = 0.9 
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Table 2. Basic Reynolds stress model. Model 2 

c, = 1.8 c2 = 0.6 clW = 0.5 c2W = 0.3 
c,, = 1.44 c,,? = 1.92 (; = 0.18 c, = 2.5 

tions that may be written : 

DE 
rl = d,j+P,,+#,i-~Ei,. Df 

The shear generation 

requires no approximation and the same 
adopted in all cases for di, and E,,, namely : 

(1) 

model is 

and 

As usual the pressure-strain process 4i, is decomposed 
into a non-linear, turbulent part, d,, , , a mean shear 
(or ‘rapid’) part, $,,2. and a wall-reflection con- 
tribution, 4:. Finally, as with the k--E model, the 
energy dissipation rate is obtained from its own trans- 

port equation 

(2) 
The three models differ in their approximation of $J,, 
and H(E). Table 2 gives the Basic Model that has 
figured in very many computations and been incor- 
porated in several commercial CFD codes; Table 3 
presents the replacement form of 4:; that Craft and 
Launder [4] proposed in the light of their initial ex- 
perience in predicting impinging flows with the Basic 
Model. It is the term with coefficient ~4% that ensures 
that, in an impinging flow. there is an appropriately 
large energy transfer rate from the fluctuating velocity 
normal to the wall. In simple shear that contribution 
is negligible and the term as a whole functions much 
as the superseded version of ref. [2]. Table 4 sets out 
the more elaborate scheme that. over a three-year 
period of testing at UMIST, had performed rather 
encouragingly in free flows, [5] and in an impinging 
jet at H/D = 2.0 at one Reynolds number [6]. 

To compute the heat transfer coefficients along the 
impingement surface requires, in the case of the 
second-moment closures, the solution of transport 
equations for the turbulent heat fluxes. Paradoxically, 
the model for the heat fluxes has only a very secondary 
effect on the heat transfer coefficient in the present 
test case and for this reason the form for each of the 
schemes is deferred to the Appendix. The reason, as 
we shall later see, is that in the near-impingement 
region most of the temperature drop occurs across the 
low Reynolds number sublayer. The most important 
factor in determining the local Nusselt number is thus 
the distribution of turbulent heat flux across the 
sublayer or, since a k--E model is used in this region, 
the distribution of turbulent thermal diffusivity. In 
the present study the thermal diffusivity across the 
sublayer is prescribed via the turbulent Prandtl 
number, g,,, (Table 1); a uniform value of 0.9 has 
been assigned to this quantity in common with the 
majority of computations made with this model. The 
above remarks do not mean that the wall heat transfer 
coefficient is virtually independent of the outer layer 

Table 3. New wall-reflection model, Model 3 

As Model 2 except : 

q5;, = c,,~(u,u,n,n,S,-:u,u.,n,n,-~~n,n,)f, 

I& = -qwau/- auk 3 au, 3 au 
ax u,u,&n,l~,, - 3ninj)j,. - &k 

m 
-n,wt,,$,, - 2 g nln,aln, - - 
ax”, 

-‘nmh, f, 
“l 2 ax,, 

,, au, + 4 as, np,hnj- I n,,n,S,)Ji 

f, = k”*/(c,&y) 

civ = 0.5 czw = 0.08 c;- = 0.1 cTw = 0.4 c, = 2.5 
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Table 4. New Reynolds stress model, Model 4 

A, = 4,,,+4,,2++; 
&,I = -C,E(u,,+C;(aIa,P-fA26,,))-&a,, 
&,z = -O.~(P,,-~~,,P~I)+O.~E~,,(P~~/E) 

,, w ++.A ~nlnn,W, - f n,n,h,M 

I;. = k”‘/(c,&y) 

k= 
Y, = 0.09 - 

E 

c, = 3.1(Azz4)"2 c', = 1.2 czx = 0.044 ciw = 0.08 c;, = 0.6 
c,, = 0.35 cc2 = 1.92/(1 +1.65A;'2A) c, = 0.18 c,= 2.5 

turbulence model. The wall heat transfer coefficient 
depends quite sensitively on the level of turbulence 
energy prevailing near the edge of the fully turbulent 
region and this is, of course, determined by the model 
for the turbulent stresses in the outer layer. 

2.2. The numerical solver 
Computations were made with a specially 

developed version of the TEAM computer program 
[7]. This solver is based on a finite-volume solution of 
the elliptic mean momentum, energy and turbulent 
transport equations. It adopts a staggered mesh and 
the Patankar-Spalding [8] SIMPLE algorithm for 
successively correcting the pressure field to secure 
compliance with continuity. In using the second- 
moment closure, the second moments were located in 
space so that they lay on the control-volume bound- 
aries of the mean velocity component on which they 
acted; likewise, the heat-flux nodes were placed on 
the boundaries of the temperature control volume that 
are orthogonal to the direction of the heat flux. 

In the computations reported below, convective 
transport in the mean flow variables has been approxi- 
mated via the third order quadratic upwind scheme, 
QUICK [9]. Craft [lo] has carried out an extensive 
grid refinement study for the impinging jet and found 
no perceptible change in the computed results from 
refining the mesh from 80 x 70 to 100 x 90 when the 
QUICK scheme was adopted (with this somewhat 

more refined mesh the nodes were redistributed so 
that the internode spacings in the most critical regions 
were at least halved). By contrast, significant grid sen- 
sitivity was suggested from trial computations made 
with the first-order power-law differencing scheme 
(PLDS). An 80 (normal to the plate) x 70 (radial) 
grid has thus been adopted for the majority of com- 
putations reported in Section 3 for the case 
H/D = 2.0. Twenty-eight of the 80 nodes covered the 
low-& sublayer while in the radial direction nodes 
were concentrated in the region r = D/2 to resolve 
accurately the mixing layer springing from the jet 
discharge. For H/D = 6 initial computations were 
made with a 120 x 70 grid. Further exploration sug- 
gested, however, that with an optimally distributed 
grid a 90 x 70 mesh was sufficient. For both H/D 
ratios, as the pipe Reynolds number was increased the 
near-wall concentration of nodes was increased so 
that the internode spacing in terms of wall units 
remained approximately the same as for Re = 23 000. 

2.3. Boundary and compatibility conditions 
The boundary conditions are summarized in Fig. 

1. At the jet discharge the flow is fully developed. 
Accordingly, a separate computation was made of 
developing flow in a pipe with the parabolic (march- 
ing) solver PASSABLE [ 1 l] that was continued down- 
stream until fully developed conditions were reached. 
The turbulence model adopted was the Basic Model 
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All profiles prescribed via 
eparate parabolic computation 

Entrainment boundary: entering 
fluid zem turbulence 

i 

symmetry axis 
zero gradient conditions 

’ wall boundary 
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FIG. I. The solution domain and a summary of the boundary conditions 

(given in Table 2). The computed mean velocity, 
Reynolds stress and dissipation profiles obtained in 
this preliminary calculation were interpolated on to 
the portion of the mesh for the impinging jet calcu- 
lation covering the pipe inlet. In fact, as indicated in 
Fig. 1, the inlet section was actually taken at 0.5 jet 
diameters above the end of the pipe for stability 
reasons. Over the remainder of the upper boundary 
and at the right hand outflow boundary the static 

pressure was treated as uniform which enabled the 
velocity normal to the boundary to be obtained from 
continuity. The constraint on the turbulence variables 
along these boundaries depended on whether the flow 
was entering or leaving the domain. In-flowing fluid 
was assigned zero values of turbulent stress and dis- 
sipation while, for fluid leaving, zero gradient values 
were applied. 

On the left hand axis of symmetry, zero-gradient 

Model 

--- 1 
-- 2 

3 
- 4 

OOJ L 
0.0 0.1 0.2 0.3 YP 0.4 

b) 

FIG. 2. Root-mean-square turbulent velocity normal to wall on stagnation line, Re = 23000. (a) H/D = 2; 
(b) H/D = 6. 
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values were assigned to all variables except the radial 
velocity CJ, the shear stress UP and heat flux u0 whose 
values were set to zero. Finally on the wall the radial 
and normal velocity components were set to zero as 
were the turbulence energy k and the quasi-dissipation 
i (the dissipation itself is Z+Zv(dk”‘/dy)’ and is non- 
zero at the wall). A uniform temperature gradient was 
applied along the wall corresponding to the constant 
heat flux of the experiments. 

The interface between the regions adopting a 
second-moment closure and the eddy viscosity model 
was fixed along a single radial line at a distance from 
the wall such that the average turbulent Reynolds 
number R, there was about 150. At the interface con- 
tinuity of shear stress, heat flux, temperature, tur- 
bulent kinetic energy and E was enforced. Because 
eddy viscosity schemes return such highly inaccurate 
values of normal stresses, however, it was seen as 
counterproductive to impose these inaccurate values 
of 17’. L;’ and I?’ implied by the k--E model on the outer- 
region turbulence model. Instead, gradients of z/k 
etc. were set to zero at the inner boundary of the region 
handled by second moment closure. In practice, this 
weak constraint should be satisfactory since it exerts 
an influence only on the diffusive transport across the 
interface where. in any event, generation and dis- 
sipation agencies are much more influential than 
diffusion in the stress budgets. 

3. PRESENTATION AND DISCUSSION OF 

RESULTS 

A powerful impression of the strengths and weak- 
nesses of the different turbulence models in handling 
stagnation flows is provided by Fig. 2. This shows 
the distribution of the normalized r.m.s. turbulent 
velocity normal to the wall along the jet symmetry 
axis. The k--E scheme, Model 1, produces excessive 
turbulence energies and this leads to levels of v’ up to 
four times as large as in the experiment. This very 
poor prediction arises mainly from the use of the 
eddy-viscosity stress-strain law to represent normal 
stresses, 

;;T = “k-Iv 
3 

!?! , ay 
> 

, etc. 

which leads to a turbulence energy generation rate in 
the irrotational region close to the stagnation point 
of 

3v 
( > 

F 2. 
1 ay 

As the turbulence energy becomes too large so does 
v, which further serves to amplify k. 

What is perhaps initially surprising is that the basic 
second-moment closure, Model 2, does not do much 
better. The culprit in this case is the model of the 
process r$G2. This wall correction principally reduces 
the strength of the process 4ij2 when the suffices i or 

i denote the direction normal to the wall. In a simple 
shear flow the action of r$ij2 is to transfer a proportion 
of the energy generated in streamwise fluctuations to 
those in the plane orthogonal to the mean velocity; 
thus the intervention of 4t2 reduces the effective gen- 
eration rate of 7; its level is therefore lower than in 
a free flow. In the present stagnation flow, however. 
the principal stress generation is in the 7 component 
itself. The process 4,,Z would normally export a large 
proportion of this generation to other components 
but this transfer is reduced by $:/?. Thus, in a stag- 
nation flow the wall ‘damping’ term $,“,? actually leads 
to an augmenrotion of the turbulent velocity normal 
to the wall. 

The other two Reynolds stress models (Models 3 
and 4) both give very much closer agreement with the 
measured data at H/D = 2.0. This is not surprising 
since their wall corrections have been developed with 
this particular test case in mind [4, 61. It is interesting 
to note that the increase in H/D from 2.0 to 6.0 
roughly doubles the near-wall turbulent velocity 
levels, a trend that is well captured by Model 3 but 
not by Model 4. The excessive near-wall energy that 
the latter scheme predicts derives from a recently dis- 
covered weakness of this model in the developing-flow 
region of jets : the reduced importance of mean strain 
in the dissipation equation adopted by this scheme (cf 
Table 4 and 2) leads to a too slow rise in E and thus 
to an appreciable overshoot in Reynolds stress levels 
(El Baz [12]). 

The mean velocity in the stagnation region is 
pressure dominated and not significantly affected 
by Reynolds stresses. We note, however, that if (as 
proposed in ref. [13]) the recorded mean velocity of 
the single hot wire on the axis is interpreted as 
,/( P”+?+z), Fig. 3, the predicted profile with 
Model 3 for H/D = 6 accords quite well with the 
experimental data with, in particular, the strongly 
non-linear variation very close to the wall being well 
captured. Model I and, to a lesser extent, Model 2 
produce too high near-wall velocities because the 
turbulence levels they predict are excessive. Model 4 
gives too low velocities because of the excessive mix- 
ing of the jet before coming under the influence of the 
wall. 

The development of the mean and fluctuating vel- 
ocities as the flow develops away from the stagnation 
point is presented in Figs. 4-7 for H/D = 2.0. The 

1.0 
1 

rp - 0.00 

1 

0.01 1 
0.0 0.1 0.2 

YP 
0.J 04 

FIG. 3. Variation of ‘apparent’ mean velocity normal to plate 
on stagnation line. H/D = 6 ; Re = 23 000. Key as Fig. 2. 
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ool L -0.21 1 
0.0 0.1 02 YP 0.3 a4 0.0 0.1 o-2 YP 0.S 04 

FIG. 4. Development of O’ with radius. H/D = 2.0; Re = FIG. 6. Turbulent shear stress profiles in the radial wall jet. 
23 000. Key as Fig. 2. H/D = 2.0; Rr = 23000. Key as Fig. 2. 

0.J 
r/D - 0.50 

I 

OOJ 1 
0.0 0.1 0.2 0.J 0.4 

rp - 1.00 
I 

ou O-I 0.2 0.J 0.4 

rp - 2.50 

I 

-00 0.1 0.2 YP 0.J 0.4 

FIG. 5. Development of r.m.s. velocity fluctuations in direc- 
tion of mean velocity vector. H/D = 2.0 ; Re = 23 000. Key 

as Fig. 2. 
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02 O-J 04 
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I.2 

1.0 

0.4 

0.2 
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0.0 0-I 0.2 0.3 04 
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1.0 

0.a 

0.6 

0.4 

0.2 

0.0 
0.0 0.1 0.2 0.3 o-4 

r/D - 2.50 

t 

FIG. 7. Development of mean velocity profile in radial wall 
jet. H/D = 2.0; Re = 23000. Key as Fig. 2. 
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pattern displayed in Fig. 2(a) is largely reproduced at 
greater radial distances. Fig. 4, even though, as shear 
replaces normal straining as the principal energy- 
generation agency, the weaknesses of Models I and 2 
identified above are not as important. At r/D = 2.5, 
Model I gives particularly high levels of r’ at large 
y/D even though (as we shall see in Fig. 7) the pre- 
dicted mean velocity gradients are weaker than in the 
experiment. This appears to be due principally to the 
insensitivity of eddy viscosity models to the effects of 
streamline curvature. By contrast, the three second- 
moment closures give fairly similar results to one 
another with appreciably lower levels of r’. Note that, 
in Fig. 5 the computed quantity presented as LI’ is 
actually the r.m.s. fluctuating velocity in the direction 
of the mean velocity vector, for it is believed that this 
is what the single wire velocity data will have recorded. 
(In fact only at r/D = 0.5 for values of y/D greater 
than 0. I does the plotted quantity differ significantly 
from the r.m.s. radial velocity.) Again Model 3, fol- 
lowed by 4, gives the most accurate account of the 
development, with Models 1 and 2 being less suc- 
cessful-though not as spectacularly so as for IT’. The 
same relative pattern is evident in the shear-stress 
comparisons presented in Fig. 6. Finally, so far as 
H/D = 2.0 is concerned, the mean velocity profiles in 
Fig. 7 serve to confirm the impressions formed from 

d 

I rp - 0.50 I 

the fluctuating velocity field. Models 3 and 4 achieve 
close correspondence with the measurements whereas 
Models I and 2 produce too rapid mixing as would be 
expected from the excessive predicted levels of shear 
stress shown in Fig. 6. 

The computations of the velocity field show vir- 
tually no effect of Reynolds number and for this 
reason the results at Re = 77000 have not been 
included. At this higher flow rate the level of agree- 
ment between Model 3 and the data is on the whole 
slightly better than at Ra = 23 000 as the experiments 
themselves do show a weak influence of Re. 

The computations for the jet placed six diameters 
above the impingement surface are shown in Figs. 8- 
10 for the higher jet Reynolds number. (The results 
at Re = 23000 display a similar behaviour, though 
since the experiments in this case are limited to mean 
velocity and ZI’, comparisons at the higher Re have 
been selected.) The profiles of streamwise and normal 
turbulent velocities are shown at three stations in Fig. 
8. The general picture to emerge is very similar to that 
at H/D = 2. One notes the excessive levels of r’ near 
the stagnation point (r/D = 0.5) returned by Models 
I and 2 and the relatively small differences among the 
models in predicting u’. As at H/D = 2.0, none of the 
models captures the near-wall peak of U’ found in the 
measurements, a discrepancy that is believed to arise 

b) 

001 t 
0.0 0.1 0.2 0.3 04 

I rp - 1.50 

I 

o.oJ 
0.0 1 

0.1 0.2 0.3 0.4 
0.3 

r/D - 1.50 1 

1 
o.2 YP 0.3 0.4 

o.oJ 00 1 
0.1 0.2 0.3 0.4 

0.5 

r/D - 3.00 

0.2-r 

L 
0.2 YP 0.3 0.4 

FIG. 8. Profiles of r.m.s. turbulent velocity in radial wall jet. H/D = 6.0; Re = 70000. Key as Fig. 2. 
(a) Component parallel to wall ; (b) Component normal to wall. 
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-0.0 0.1 02 0.3 0.4 

-02J 1 
0.0 0.1 02 

YP 
03 0.4 

FIG. 9. Development of turbulent shear stress in radial wall 
jet. H/D = 6.0; Re = 70000. Key as Fig. 2. 

from the use of the k--E eddy viscosity model across 
the sub1ayer.t Overall, Model 3, followed by Model 
4, achieves the best agreement though by r/D = 3.0, 
the predicted levels of both the fluctuating velocities 
given by all the second moment closures are somewhat 
too low. A similar pattern may be seen in the shear- 
stress data of Fig. 9. The resultant mean velocity pro- 
files are compared with the experimental data in Fig. 
IO. All the models produce somewhat too rapid mix- 
ing initially, leading to a peak velocity at r/D = 1.5 
lower than measured and too high velocities in the 
outer part of the wall jet. The discrepancy is plainly 
least for Model 3 which is in line with the Reynolds 
stress data. Apart from the superiority of Model 3 the 
relative agreement achieved with the other models 
changes from station to station and in a way that does 
not always seem consistent with the iE profiles. The 
reason for this apparent inconsistency is that, unlike 
the case of a thin shear layer, the normal stress terms 
make a substantial contribution to the mean momen- 
tum budget for r/D < 1.5. The different models pre- 
dict very different levels of (~‘-2) and the radial 
gradient of this quantity is effectively a source in the 
radial momentum equation. 

The final comparisons are with the Nusselt number 
data of Baughn and Shimizu [I41 and Baughn et al. 
[15]. Figure II considers impingement at H/D = 2.0 
for two Reynolds numbers. As with the dynamic field, 
the results predicted by the four models group them- 
selves in pairs: Models I and 2 produce excessive 
levels of Nusselt number due, we suggest, to the far 
too high turbulence energy near the stagnation point 
while Models 3 and 4 do rather better, predicting at 

t This conjecture is supported by preliminary com- 
putations made at UMIST in November 1992 using a second- 
moment closure across the sublayer. 

02 03 04 

rp 

= 1.50 

I 

rp - 3.00 

FE. 10. Mean velocity profiles in radial wall jet. H/D = 6.0; 
Re = 70000. Key as Fig. 2. 

least qualitatively the increase in Nusselt number with 
radius that occurs in the range I .2 < r/D < 2.0. These 
last two schemes also capture the dependence of Nus- 
selt number on the Reynolds number at the stagnation 
point better than Models 1 and 2. The reason for this 
is that, with the turbulence energy levels being much 
lower for Models 3 and 4, the thermal boundary layer 
at the stagnation point is virtually confined within 
the viscous sublayer, Fig. 12; thus, like the data, the 
dependence of Nusselt number on Reynolds number 
is close to the 0.5 power found in laminar flow. Beyond 
r/D = 2.0, both experiments and computations indi- 
cate that Nu rises approximately as Re0-7. An incorrect 
feature of the computations with Models 3 and 4 at 
the higher Reynolds number is the shift of the region 
exhibiting the sudden rise in Nu towards the stag- 
nation point, Fig. I 1 (b). The origin of this behaviour 
can be traced to the distribution of turbulent kinetic 
energy across the near-wall sublayer (a region com- 
puted in all cases by the eddy viscosity model). At 
Re = 23 000, the predicted levels of turbulence energy 
within the sublayer region shown in Fig. 13(a) grows 
steadily over the range 1 .I < r/D Q 1.7 but they 
always remain lower than those outside. By contrast, 
at Re = 70 000 there is an abrupt increase in k within 
the sublayer between r/D = 0.S and r/D = 1.1, Fig. 
13(b). Significantly, this is precisely the range over 
which Nu undergoes its abrupt rise. 

Before leaving the case of H/D = 2.0, it is of interest 
to note in Fig. I4 the importance of the additional 
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FIG. I I. Variation of scaled Nusselt number with radius. H/D = 2. Key as Fig. 2. (a) 
(b) Re = 70000. 

Re = 23000; 

term in the E equation referred to as the ‘Yap cor- 
rection’ [l 11. The term has only a minor effect on the 
turbulent velocity and none at all on the mean 
velocity. Without it, however, the Nusselt number at 
the stagnation point is nearly twice as high as when it 
is included. The term achieves its effect through limit- 

0.00 0. 01 0. 02 0. 03 0.04 0. 05 

YP 

FIG. 12. Mean temperature and effective turbulent viscosity 
profiles near impingement point. H/D = 2.0; Re = 23 000. 

Computations using Model 4. 

ing the departure of the near-wall length scale from its 
equilibrium level, thus raising levels of E and reducing 
k. The term is particularly important within the region 
covered by the k-8 model. As one proceeds to larger 
radii and the near-wall profiles of k and E revert 
towards those found in a uniform-stress shear flow, 
the effect of the term becomes negligible. 

The Nusselt number predictions for H/D = 6.0 
appear in Fig. 15. There are several points to note. 
While Models 1 and 2 still achieve the worst agree- 
ment, it is significant that the second moment closure 
now gives results inferior to those of the eddy viscosity 
scheme. The reason is that near-wall turbulent ener- 
gies along the symmetry line are now much higher 
than for H/D = 2.0, so the erroneous action of & 
to increase velocity fluctuations normal to the wall 
creates greater anomalies. Model 2 also stands out 
as the only scheme giving too low levels of Nu for 
r/D > 4.0. The reason for this is directly linked to 
the excessive levels of Nu near the stagnation point. 
Imagine the wall is heated, so the excessive heat trans- 
fer coefficients near the stagnation point means that 
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FIG. 13. Computed turbulent energy profiles in near-wall 
region. 

the enthalpy thickness of the thermal boundary layer 
becomes too large ; this in turn leads to mean tem- 
perature gradients across the thermal layer becoming 
too low. At larger radii, as the excessive levels of 
turbulent diffusivities disappear, the too low tem- 
perature gradients produce too low heat transfer 
coefficients. 

Model 3 is now distinctly more successful than 
Model 4 in predicting heat-transfer coefficients near 
the stagnation point. Even for Model 3 there are 
nevertheless fairly serious discrepancies with the 
experimental data : an overestimate of Nu at the stag- 

nation point of some 25% at Re = 23 000 increasing 
to 35% at Re = 70 000. In round terms Model 3 gives 
a Reynolds number exponent at the stagnation point 
of 0.6 compared with 0.5 indicated by the experiments. 
Since the variation of u’ along the stagnation line 
is well predicted in the fully turbulent region, the 
suspicion must be that the problems are arising within 
the near-wall sublayer where the k-E model has been 
adopted. In common with other eddy viscosity 
models, the scheme adopted here employs the tur- 
bulent Reynolds number R, to dampen the turbulent 
transport coefficients as the wall is approached. Sev- 
eral workers have commented, however, that the 
decay of turbulent mixing is due principally to the fact 
that u’ vanishes faster than k’/* as y tends to zero, a 
phenomenon that is not, to first order, due to viscous 
effects. Therein would appear to lie the reason for 
the slightly incorrect dependence of Nu on Reynolds 
number. 

4. CONCLUSIONS 

An extensive comparison has been presented of the 
performance of four transport models of turbulence 
in predicting the dynamic and thermal characteristics 
of the near-impingement region of the turbulent 
impinging jet. Three of the models were of the second- 
moment closure type that are now beginning to be 
incorporated into commercial CFD software while 
the fourth was the widely used k-c eddy viscosity 
model. All schemes used a low-Reynolds-number k- 
E model across the near-wall semi-viscous sublayer. 

Both the eddy viscosity model and the ‘basic’ Reyn- 
olds stress model (Models 1 and 2 respectively) 
achieved very poor agreement with experiments, the 
former because of the basic weakness of the eddy 
viscosity stress-strain relation and the latter due to 
the incorrect response of its sub-model of the ‘wall- 
reflection’ process in a stagnating strain field. 

FIG. 14. Effect of Yap correction on Nusselt number. H/D = 2; Re = 23 000. - - - Model 3 ; - Model 3 
with Yap correction removed. 
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a) 

b) 

FIG. 15. Variation of normalized Nusselt number with radius. H/D = 6. Key as Fig. 2. (a) Re = 23000; 
(b) Re = 70000. 

The two other schemes return markedly improved 
behaviour, particularly Model 3. Since this model sim- 
ply introduces a replacement wall-reflection mode) 
into the basic scheme, it is also attractively simple- 
at any rate in comparison with Model 4. 

Model 3 captures reasonably well the sensitivity of 
the shape of Nusselt number profile to the height of 
the impinging jet above the surface, for r/D < 3.0. 
However, the computed variation of Nu on Re at 
the stagnation point follows a 0.6 power dependence 
rather than the 0.5 variation of the experiments. It 
appears that the cause of this discrepancy is to be 
found in the use of the eddy viscosity model across 
the sublayer with its excessive reliance on R, to reduce 
the turbulent viscosity. Clearly, therefore, the replace- 
ment of this model by a low-Reynolds-number 

second-moment closure is a refinement that should 
soon be explored. 
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APPENDIX 

The heat flux and scalar variance equations used with 
Models 2 and 3 are : 

d;e 
L = d,,+ P,,+&,-e;o 

dt 

E,o = 0 

d@ 
dt = 2(Po-d+4, 

P” = -;;8: 

do=&[Gkn,~~] 

E 
cc,, = 0.5Rpk 

where the timescale R is taken to be constant and equal 
to 2. 

C,() = 3.0 c2(, = 0.5 c,, = 0. I8 

When using Model 4, the same heat flux models are used 
except for: 
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t I I 
The scalar variance dissipation rate is obtained from the 
transport equation : 

2= -(2$+0.92$(l+0,;A;,1A)+;fP0 

+~“,;(~y+~[c”d~j 

1’) = C#k’/& 

q=O.18 c,=O.O9 


